If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15k^2-19k+6=0
a = 15; b = -19; c = +6;
Δ = b2-4ac
Δ = -192-4·15·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-1}{2*15}=\frac{18}{30} =3/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+1}{2*15}=\frac{20}{30} =2/3 $
| 3y2-48=0 | | 10x-27=10 | | 1.286=x+x^2 | | 3+3y=584 | | -21=6x-x | | -86=2b-8(b+7) | | 7(m-3)-6(m+5)=-51 | | 11+5+6m+2m=6m+4-2m | | n(.8)=72 | | 7-6w=37 | | q=63-(4q-6) | | 1+5b=4+6b | | 3x^2- 20x+28=0 | | -10+x=5x-6x | | 3(4x)=144 | | 2.3x+66.4=3.4-8.2x | | (5)n=78 | | 8-(4y-3)=6-5y | | 7/3x+1/3x=2x+6/3+8/3x | | 2/7u-2/5=7/9 | | 4+2x=12;x=2 | | 8x+3-10x=-29(x-2)+3 | | 5(3+3r)=120 | | 6x+1/12=x/6 | | 4(1-3x)+7x=-16 | | 5y-3+y+51=8y+50-4y | | 5x-7=-2x+5 | | -7=x-7-3 | | 0.8x-11=0,3x+41 | | -88=2(-4+5n) | | 27^(2x)=(1/9)^(x-1) | | 1.5b+b+b+45+2b-90+90=540 |